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Abstract. We report upon the present status of global fits to Cabibbo-Kobayashi-Maskawa matrix.

1 Introduction

The three-family Cabibbo-Kobayashi-Maskawa (CKM)
quark-mixing matrix is a key element of the Standard Mo-
del (SM). The nine complex CKM elements are completely
specified by three mixing angles and one phase that is res-
ponsible for CP violation in the SM. Measuring the CKM
matrix elements in various ways provides consistency tests
of the matrix elements itself and with unitarity. Any signi-
ficant inconsistency with the SM would indicate the pre-
sence of new physics.

A convenient parameterization of the CKM matrix is
the Wolfenstein approximation [1], which to order O(λ4)
is given by:

V =




1 − λ2

2 λ Aλ3(ρ− iη)
−λ 1 − λ2

2 Aλ2

Aλ3(1 − ρ̄− iη̄) −Aλ2 1


+O(λ4),

(1)
where λ = 0.2241 ± 0.0033 is the best-known parameter
measured in semileptonic K decays, A = 0.82 is deter-
mined from semileptonic B decays to charmed particles
with an accuracy of � 6% and ρ̄ = ρ · (1 − λ2/2) and
η̄ = η · (1 − λ2/2) are least-known.

The unitarity of the CKM matrix yields six trian-
gular relations of which VudV

∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

is well-suited for experimental tests. In order to deter-
mine the apex of the unitarity triangle (ρ̄, η̄) presently
eight measurements are used as input, the B semilepto-
nic branching fractions B(B → Xc�ν), B(B → Xu�ν),
and B(B → ρ�ν), the normalized B → D∗�ν rate at zero
recoil, F(1)|Vub|2, the B0

d and B0
s oscillations frequencies

∆mBd
and ∆mBs , the parameter |εK | that specifies CP

violation in the K0K̄0 system, as well as sin 2β which is
measured in CP asymmetries of charmonium K0

S (K0
L)

final states. Though many of these measurements them-
selves are rather precise their translation to the ρ̄−η̄ plane
is affected by large non-gaussian theoretical uncertainties.
Various approaches, which treat theoretical errors in dif-
ferent ways, can be found in the literature [2,3,4,5,6].

2 The scan method

The scan method is an unbiased procedure for extracting
A, ρ̄, η̄ from measurements. We select observables that al-
low us to factorize their predictions in terms of theoretical
quantities Ti that have an a priori unknown (and likely
non-gaussian) error distribution (∆i), other observables,
and the CKM dependence expressed as functions of Wol-
fenstein parameters. As an example, consider the charm-
less semileptonic branching fraction for B → ρ�ν, which
is predicted to be B(B → ρ�ν) = |Vub|2 · Γ̃ρ�ν · τB , where
τB0 is the B0 lifetime and Γ̃ρ�ν is the reduced rate affected
by non-gaussian uncertainties. This analysis treats eleven
theoretical parameters with non-gaussian errors, the re-
duced inclusive semileptonic rates Γ̃Xu�ν and Γ̃Xc�ν , the
form factor for B → D∗�ν at zero recoil, FD∗(1), the bag
factors of the K0 and B0 systems, BK andBB , the B0

decay constant fB , ξ2 = f2
Bs
/f2
Bd
BBs/BBd

and the QCD
parameters η1, η2, η3 and ηB .

We perform a χ2 minimization based on a frequentist
approach by selecting a specific value for each Ti within
the allowed range (called a model). We perform indivi-
dual fits for many models scanning over the allowed non-
gaussian ranges of the Ti parameter space. The QCD pa-
rameters are not scanned; their small errors are treated in
the χ2 as gaussian. For theoretical quantities calculated on
the lattice, which have gaussian errors (BK , BB , fB and ξ)
we add specific χ2 terms. To account for correlations bet-
ween observables that occur in more than one prediction,
such as the masses of the t-quark, c-quark, and W -boson,
B hadron lifetimes, B hadron production fractions and λ,
we include additional terms in the χ2 function.

We consider a model to be consistent with the data if
the fit probability yields P (χ2) > 5%. We determine the
best estimate for each of the 17 fit parameters and plot a
95% confidence level (C.L.) contour in the ρ̄− η̄ plane. We
overlay the ρ̄− η̄ contours of all accepted fits. In order to
study correlations among the Ti and constraints the data
impose we perform global fits with non-gaussian theory
errors scanned over a ±5∆ wide range (see Sect. 5).
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Table 1. Measurement inputs used in χ2 minimization

Observable Value Comment

B(B → Xu�ν) (2.03 ± 0.22exp ± 0.31th) × 10−3 Υ (4S)
B(B → Xu�ν) (1.71 ± 0.48exp ± 0.21th) × 10−3 LEP
B(B → Xc�ν) 0.1070 ± 0.0028 Υ (4S)
B(B → Xc�ν) 0.1042 ± 0.0026 LEP
B(B → ρ�ν) (2.68 ± 0.43exp ± 0.5th) × 10−3 CLEO/BABAR
|Vcb|F (1) 0.0388 ± 0.005 ± 0.009 LEP/CLEO/Belle
∆mBd (0.503 ± 0.006)ps−1 world average
∆mBs > 14.4 ps−1@95%C.L. LEP
|εK | (2.271 ± 0.017) × 10−3 PDG 2000 [7]
sin 2β 0.731 ± 0.055 BABAR/Belle
λ 0.2241 ± 0.0033 world average

Table 2. Theoretical parameter with non-gaussian errors

0.87 ≤ FD∗(1) ≤ 0.95 38.0 ≤ Γ̃ (c�ν) ≤ 41.5 ps−1

12.0 ≤ Γ̃ (ρ�ν) ≤ 22.2 ps−1 54.8 ≤ Γ̃ (u�ν) ≤ 79.6 ps−1

0.72 ≤ BK ≤ 1.0 σBK = 0.06 (gaussian)
211 ≤ fBd

√
BBd ≤ 235 MeV σ

fB

√
BB

= 33 MeV (gaussian)

1.18 ≤ ξ ≤ 1.30 σξ = 0.04 (gaussian)
0.54 ≤ ηB ≤ 0.56 1.0 ≤ η1 ≤ 1.64
0.564 ≤ η2 ≤ 0.584 0.43 ≤ η3 ≤ 0.51

2.1 Treatment of ∆mBs

Since B0
s B̄

0
s oscillations have not been observed yet, a

lower limit on ∆mBS
at 95% C.L. has been determined

by combining analyses of different experiments using the
amplitude method [8]. To incorporate ∆mBS

into the χ2

function, we use a new approach that is based upon the
significance of a ∆mBs measurement [9]:

S =

√
N

2
fBs(1 − 2w)e− 1

2 (∆msσt)2 , (2)

where N is the sample size, fBs
is the Bs purity, w is

the mistag fraction, and σt is the resolution. Substituting

C for
√

N
2 fBs(1 − 2w) and interpreting S as the number

of standard deviations by which ∆mBs
differs from zero,

S = ∆mBs
/σ∆mBs

, we may define a contribution to the
χ2 from the ∆mBs

measurements as:

χ2
∆mBs

= C2
(

1 − ∆

∆mBs

)2

e−(∆mBsσt)2 , (3)

where ∆ is the best estimate according to experiment.
The values of (∆,C2, σt) are chosen to give a minimum at
17 ps−1, and a P (χ2) = 5% at ∆mBs = 14.4 ps−1. In the
region of small χ2, this function exhibits similar general
features as that used in our previous global fits [10], while
it does not suffer from numerical instabilities arising from
multiple minima. The two functions deviate at large values
of χ2, where in any case poor fits result.

�

Fig. 1. Results of the global fit in the ρ̄ − η̄ plane

Fig. 2. Fit results in θs − ρ̄ plane from aφK0
S

Table 3. Results of 95% C.L. range for ρ̄, η̄, α and γ from the
global fits shown in figure 1. For comparison results from RFIT
and the Bayesian method are also given.

parameter Scan method RFIT [9] Bayesian [9]

ρ̄ -0.13 to 0.40 0.091 to 0.317 0.137-0.295
η̄ 0.22 to 0.48 0.273 to 0.408 0.295-0.409
α 50.40 to 126.60

γ 34.40 to 91.70 42.10 to 75.70 47.00 to 70.00

3 Results of the global fit

Figure 1 shows the result of scanning all Ti simultaneously
within ±1∆ of their allowed range except for the QCD pa-
rameters. We have used the input measurements summa-
rized in Table 1 and ranges for the Ti listed in Table 2. The
black points represent the best estimates of (ρ̄, η̄) for each
model that is consistent with the data. The grey region
shows the overlay of all corresponding 95% C.L. ρ̄ − η̄
contours. For reference, the light ellipse depicts a typi-
cal contour. To guide the eye the 95% C.L. bounds on
|Vub/Vcb|, |εK |, ∆mBd

and sin 2β as well as the lower bo-
und on ∆mBs are also plotted. From these fits we derive
95% C.L. ranges for ρ̄, η̄, α and γ that are listed in Table 3.
For comparison, recent results from two other global fits
(RFIT [4], Bayesian fit [3]) are also shown.

Using the same source of inputs, several differences
exist between the scan method and the other two approa-
ches. First, we scan separately over the inputs of exclusive
and inclusive b → u�ν and b → c�ν measurements. Se-
cond, we use a different approach to incorporate ∆mBs .
While in the Bayesian method theoretical quantities are
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parameterized in terms of gaussian and uniform distribu-
tions, we make no assumptions about their shape. Thus,
the Bayesian fits tend to produce a smaller region in the
ρ̄ − η̄ plane and are more sensitive to fluctuations than
corresponding fits in the scan method. In RFIT, the ρ̄− η̄
plane is scanned to find a solution in the theoretical pa-
rameter space. Since in RFIT a central region with equal
likelihood is determined, it is not possible to give proba-
bilities for individual points. In contrast, in the scan me-
thod individual contours have a statistical meaning, with
the center point yielding the highest probability. Since the
mapping of the theory parameters to the ρ̄− η̄ plane is not
one-to-one, it is possible in the scan method to track which
values of (ρ̄, η̄) are preferred by the theory parameters.

4 Search for new physics

The decay B → φK0
S that proceeds via a b → ss̄s pen-

guin loop is expected measure sin 2β in the SM to within
∼4%. New physics contributions, however, may introduce
a new phase θs that may change the CP asymmetry aφK0

S

significantly from aJ/ψK0
S
. The BABAR/Belle average of

SφK0
S

= −0.39 ± 0.41 has been updated this summer yiel-
ding SφK0

S
= −0.14 ± 0.33 [11]. The deviation from sin 2β

has remained at ∼ 2.6σ. In our global fit we introduce a
new phase θs. Figure 2 shows the overlay of all resulting
contours in the θs − ρ̄ plane that have acceptable fit pro-
babilities. Presently, the phase is consistent with zero as
expected in the SM.

Physics beyond the SM may affect B0
dB̄

0
d mixing and

CP violation in B → J/ψK0
s and B → ππ. Using a model-

independent analysis [12] we can introduce a scale para-
meter, rd, for B0

dB̄
0
d mixing and an additional phase, θd,

for parameterizing aψK0
s
. In the SM we expect rd = 1 and

θd = 0. With present uncertainties rd and θd are consistent
with the SM expectations (see [10]).

5 Visualizing the role of theoretical errors

In addition to the global fits in the ρ̄− η̄ plane, we explore
the impact of measurements on the theoretical parameters
and their correlations. We typically scan theory parame-
ters within ±5∆ and denote them with ∼. Presently, we
use either exclusive or inclusive Ṽub, Ṽcb information and
plot contours for three of the five scanned theoretical pa-
rameters for different conditions. An example is shown
in Fig. 3, where we have scanned inclusive Ṽub, inclusive

Ṽcb, B̃K , ˜fBd

√
BBd

and ξ̃. For Ṽub, Ṽcb and B̃K we plot
two-dimensional contours on the surface of a cube. In each
plane five contours are visible. The outermost contour (so-
lid black) results from requiring a fit probability of > 32%.
The next contour (also solid black) is obtained by restric-
ting all other undisplayed theory parameters to their al-
lowed range of ±1∆. The third solid line results by fixing
the parameter orthogonal to plane to the allowed range,
while the outer dashed line is found if the latter parameter
is fixed to its central value. The internal dashed black line

� � �
Fig. 3. Contours of the theory parameters B̃K −Ṽub−Ṽcb both
resulting from inclusive reduced semileptonic rates for fit pro-
babilities P (χ2) > 32% after scanning B̃K , f̃B

√
BB , ξ̃, Γ̃ (B →

Xc�ν and Γ̃ (B → Xu�ν over ±5∆i range.

is obtained by fixing all undisplayed parameters to their
central values. Further details, other combination plots
and results for exclusive Ṽub and Ṽcb scans are discussed
in [10].

6 Conclusion

The scan method provides a conservative, robust method
that treats non-gaussian theoretical uncertainties in an
unbiased way. This reduces conflicts with the SM resul-
ting from unwarranted assumptions concerning the theo-
retical uncertainties, which is important in searches for
new physics. The scan methods yields significantly lar-
ger ranges for the ρ̄ − η̄ plane than the Bayesian me-
thod. Presently, all measurements are consistent with the
SM expectation due to the large theoretical uncertainties.
The deviation of aφK0

s
from sin 2β measured in charmo-

niumK0
S (K0

L) modes is interesting but not yet significant.
Model-independent parameterizations will become impor-
tant in the future when theory errors are further reduced.
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